1
0
Fork 0
godot/drivers/gles3/shaders/tonemap_inc.glsl

180 lines
7.3 KiB
GLSL

layout(std140) uniform TonemapData { //ubo:0
float exposure;
float white;
int tonemapper;
int pad;
int pad2;
float brightness;
float contrast;
float saturation;
};
// This expects 0-1 range input.
vec3 linear_to_srgb(vec3 color) {
//color = clamp(color, vec3(0.0), vec3(1.0));
//const vec3 a = vec3(0.055f);
//return mix((vec3(1.0f) + a) * pow(color.rgb, vec3(1.0f / 2.4f)) - a, 12.92f * color.rgb, lessThan(color.rgb, vec3(0.0031308f)));
// Approximation from http://chilliant.blogspot.com/2012/08/srgb-approximations-for-hlsl.html
return max(vec3(1.055) * pow(color, vec3(0.416666667)) - vec3(0.055), vec3(0.0));
}
// This expects 0-1 range input, outside that range it behaves poorly.
vec3 srgb_to_linear(vec3 color) {
// Approximation from http://chilliant.blogspot.com/2012/08/srgb-approximations-for-hlsl.html
return color * (color * (color * 0.305306011 + 0.682171111) + 0.012522878);
}
#ifdef APPLY_TONEMAPPING
// Based on Reinhard's extended formula, see equation 4 in https://doi.org/cjbgrt
vec3 tonemap_reinhard(vec3 color, float p_white) {
float white_squared = p_white * p_white;
vec3 white_squared_color = white_squared * color;
// Equivalent to color * (1 + color / white_squared) / (1 + color)
return (white_squared_color + color * color) / (white_squared_color + white_squared);
}
vec3 tonemap_filmic(vec3 color, float p_white) {
// exposure bias: input scale (color *= bias, white *= bias) to make the brightness consistent with other tonemappers
// also useful to scale the input to the range that the tonemapper is designed for (some require very high input values)
// has no effect on the curve's general shape or visual properties
const float exposure_bias = 2.0f;
const float A = 0.22f * exposure_bias * exposure_bias; // bias baked into constants for performance
const float B = 0.30f * exposure_bias;
const float C = 0.10f;
const float D = 0.20f;
const float E = 0.01f;
const float F = 0.30f;
vec3 color_tonemapped = ((color * (A * color + C * B) + D * E) / (color * (A * color + B) + D * F)) - E / F;
float p_white_tonemapped = ((p_white * (A * p_white + C * B) + D * E) / (p_white * (A * p_white + B) + D * F)) - E / F;
return color_tonemapped / p_white_tonemapped;
}
// Adapted from https://github.com/TheRealMJP/BakingLab/blob/master/BakingLab/ACES.hlsl
// (MIT License).
vec3 tonemap_aces(vec3 color, float p_white) {
const float exposure_bias = 1.8f;
const float A = 0.0245786f;
const float B = 0.000090537f;
const float C = 0.983729f;
const float D = 0.432951f;
const float E = 0.238081f;
// Exposure bias baked into transform to save shader instructions. Equivalent to `color *= exposure_bias`
const mat3 rgb_to_rrt = mat3(
vec3(0.59719f * exposure_bias, 0.35458f * exposure_bias, 0.04823f * exposure_bias),
vec3(0.07600f * exposure_bias, 0.90834f * exposure_bias, 0.01566f * exposure_bias),
vec3(0.02840f * exposure_bias, 0.13383f * exposure_bias, 0.83777f * exposure_bias));
const mat3 odt_to_rgb = mat3(
vec3(1.60475f, -0.53108f, -0.07367f),
vec3(-0.10208f, 1.10813f, -0.00605f),
vec3(-0.00327f, -0.07276f, 1.07602f));
color *= rgb_to_rrt;
vec3 color_tonemapped = (color * (color + A) - B) / (color * (C * color + D) + E);
color_tonemapped *= odt_to_rgb;
p_white *= exposure_bias;
float p_white_tonemapped = (p_white * (p_white + A) - B) / (p_white * (C * p_white + D) + E);
return color_tonemapped / p_white_tonemapped;
}
// Polynomial approximation of EaryChow's AgX sigmoid curve.
// In Blender's implementation, numbers could go a little bit over 1.0, so it's best to ensure
// this behaves the same as Blender's with values up to 1.1. Input values cannot be lower than 0.
vec3 agx_default_contrast_approx(vec3 x) {
// Generated with Excel trendline
// Input data: Generated using python sigmoid with EaryChow's configuration and 57 steps
// 6th order, intercept of 0.0 to remove an operation and ensure intersection at 0.0
vec3 x2 = x * x;
vec3 x4 = x2 * x2;
return -0.20687445 * x + 6.80888933 * x2 - 37.60519607 * x2 * x + 93.32681938 * x4 - 95.2780858 * x4 * x + 33.96372259 * x4 * x2;
}
const mat3 LINEAR_SRGB_TO_LINEAR_REC2020 = mat3(
vec3(0.6274, 0.0691, 0.0164),
vec3(0.3293, 0.9195, 0.0880),
vec3(0.0433, 0.0113, 0.8956));
// This is an approximation and simplification of EaryChow's AgX implementation that is used by Blender.
// This code is based off of the script that generates the AgX_Base_sRGB.cube LUT that Blender uses.
// Source: https://github.com/EaryChow/AgX_LUT_Gen/blob/main/AgXBasesRGB.py
vec3 tonemap_agx(vec3 color) {
const mat3 agx_inset_matrix = mat3(
0.856627153315983, 0.137318972929847, 0.11189821299995,
0.0951212405381588, 0.761241990602591, 0.0767994186031903,
0.0482516061458583, 0.101439036467562, 0.811302368396859);
// Combined inverse AgX outset matrix and linear Rec 2020 to linear sRGB matrices.
const mat3 agx_outset_rec2020_to_srgb_matrix = mat3(
1.9648846919172409596, -0.29937618452442253746, -0.16440106280678278299,
-0.85594737466675834968, 1.3263980951083531115, -0.23819967517076844919,
-0.10883731725048386702, -0.02702191058393112346, 1.4025007379775505276);
// LOG2_MIN = -10.0
// LOG2_MAX = +6.5
// MIDDLE_GRAY = 0.18
const float min_ev = -12.4739311883324; // log2(pow(2, LOG2_MIN) * MIDDLE_GRAY)
const float max_ev = 4.02606881166759; // log2(pow(2, LOG2_MAX) * MIDDLE_GRAY)
// Do AGX in rec2020 to match Blender.
color = LINEAR_SRGB_TO_LINEAR_REC2020 * color;
// Preventing negative values is required for the AgX inset matrix to behave correctly.
// This could also be done before the Rec. 2020 transform, allowing the transform to
// be combined with the AgX inset matrix, but doing this causes a loss of color information
// that could be correctly interpreted within the Rec. 2020 color space.
color = max(color, vec3(0.0));
color = agx_inset_matrix * color;
// Log2 space encoding.
color = max(color, 1e-10); // Prevent log2(0.0). Possibly unnecessary.
// Must be clamped because agx_blender_default_contrast_approx may not work well with values above 1.0
color = clamp(log2(color), min_ev, max_ev);
color = (color - min_ev) / (max_ev - min_ev);
// Apply sigmoid function approximation.
color = agx_default_contrast_approx(color);
// Convert back to linear before applying outset matrix.
color = pow(color, vec3(2.4));
// Apply outset to make the result more chroma-laden and then go back to linear sRGB.
color = agx_outset_rec2020_to_srgb_matrix * color;
// Simply hard clip instead of Blender's complex lusRGB.compensate_low_side.
color = max(color, vec3(0.0));
return color;
}
#define TONEMAPPER_LINEAR 0
#define TONEMAPPER_REINHARD 1
#define TONEMAPPER_FILMIC 2
#define TONEMAPPER_ACES 3
#define TONEMAPPER_AGX 4
vec3 apply_tonemapping(vec3 color, float p_white) { // inputs are LINEAR
// Ensure color values passed to tonemappers are positive.
// They can be negative in the case of negative lights, which leads to undesired behavior.
if (tonemapper == TONEMAPPER_LINEAR) {
return color;
} else if (tonemapper == TONEMAPPER_REINHARD) {
return tonemap_reinhard(max(vec3(0.0f), color), p_white);
} else if (tonemapper == TONEMAPPER_FILMIC) {
return tonemap_filmic(max(vec3(0.0f), color), p_white);
} else if (tonemapper == TONEMAPPER_ACES) {
return tonemap_aces(max(vec3(0.0f), color), p_white);
} else { // TONEMAPPER_AGX
return tonemap_agx(color);
}
}
#endif // APPLY_TONEMAPPING