mirror of https://github.com/godotengine/godot
185 lines
4.5 KiB
GLSL
185 lines
4.5 KiB
GLSL
#[vertex]
|
|
|
|
#version 450
|
|
|
|
#VERSION_DEFINES
|
|
|
|
layout(push_constant, std140) uniform Pos {
|
|
vec4 src_rect;
|
|
vec4 dst_rect;
|
|
|
|
float rotation_sin;
|
|
float rotation_cos;
|
|
|
|
vec2 eye_center;
|
|
float k1;
|
|
float k2;
|
|
|
|
float upscale;
|
|
float aspect_ratio;
|
|
uint layer;
|
|
bool source_is_srgb;
|
|
|
|
uint target_color_space;
|
|
float reference_multiplier;
|
|
}
|
|
data;
|
|
|
|
layout(location = 0) out vec2 uv;
|
|
|
|
void main() {
|
|
mat4 swapchain_transform = mat4(1.0);
|
|
swapchain_transform[0][0] = data.rotation_cos;
|
|
swapchain_transform[0][1] = -data.rotation_sin;
|
|
swapchain_transform[1][0] = data.rotation_sin;
|
|
swapchain_transform[1][1] = data.rotation_cos;
|
|
|
|
vec2 base_arr[4] = vec2[](vec2(0.0, 0.0), vec2(0.0, 1.0), vec2(1.0, 1.0), vec2(1.0, 0.0));
|
|
uv = data.src_rect.xy + base_arr[gl_VertexIndex] * data.src_rect.zw;
|
|
vec2 vtx = data.dst_rect.xy + base_arr[gl_VertexIndex] * data.dst_rect.zw;
|
|
gl_Position = swapchain_transform * vec4(vtx * 2.0 - 1.0, 0.0, 1.0);
|
|
}
|
|
|
|
#[fragment]
|
|
|
|
#version 450
|
|
|
|
#VERSION_DEFINES
|
|
|
|
layout(push_constant, std140) uniform Pos {
|
|
vec4 src_rect;
|
|
vec4 dst_rect;
|
|
|
|
float rotation_sin;
|
|
float rotation_cos;
|
|
|
|
vec2 eye_center;
|
|
float k1;
|
|
float k2;
|
|
|
|
float upscale;
|
|
float aspect_ratio;
|
|
uint layer;
|
|
bool source_is_srgb;
|
|
|
|
uint target_color_space;
|
|
float reference_multiplier;
|
|
}
|
|
data;
|
|
|
|
layout(location = 0) in vec2 uv;
|
|
|
|
layout(location = 0) out vec4 color;
|
|
|
|
#ifdef USE_LAYER
|
|
layout(binding = 0) uniform sampler2DArray src_rt;
|
|
#else
|
|
layout(binding = 0) uniform sampler2D src_rt;
|
|
#endif
|
|
|
|
// Keep in sync with RenderingDeviceCommons::ColorSpace
|
|
#define COLOR_SPACE_SRGB_LINEAR 0
|
|
#define COLOR_SPACE_SRGB_NONLINEAR 1
|
|
#define COLOR_SPACE_HDR10_ST2084 2
|
|
|
|
vec3 srgb_to_linear(vec3 color) {
|
|
return mix(pow((color.rgb + vec3(0.055)) * (1.0 / (1.0 + 0.055)), vec3(2.4)), color.rgb * (1.0 / 12.92), lessThan(color.rgb, vec3(0.04045)));
|
|
}
|
|
|
|
vec3 linear_to_srgb(vec3 color) {
|
|
// If going to srgb, clamp from 0 to 1.
|
|
color = clamp(color, vec3(0.0), vec3(1.0));
|
|
const vec3 a = vec3(0.055f);
|
|
return mix((vec3(1.0f) + a) * pow(color.rgb, vec3(1.0f / 2.4f)) - a, 12.92f * color.rgb, lessThan(color.rgb, vec3(0.0031308f)));
|
|
}
|
|
|
|
vec3 rec709_to_rec2020(vec3 color) {
|
|
const mat3 conversion = mat3(
|
|
0.627402, 0.069095, 0.016394,
|
|
0.329292, 0.919544, 0.088028,
|
|
0.043306, 0.011360, 0.895578);
|
|
return conversion * color;
|
|
}
|
|
|
|
vec3 linear_to_st2084(vec3 color) {
|
|
// Linear color should already be adjusted between 0 and 10,000 nits.
|
|
color = clamp(color, vec3(0.0), vec3(1.0));
|
|
|
|
// Apply ST2084 curve
|
|
const float c1 = 0.8359375;
|
|
const float c2 = 18.8515625;
|
|
const float c3 = 18.6875;
|
|
const float m1 = 0.1593017578125;
|
|
const float m2 = 78.84375;
|
|
vec3 cp = pow(abs(color), vec3(m1));
|
|
|
|
return pow((c1 + c2 * cp) / (1 + c3 * cp), vec3(m2));
|
|
}
|
|
|
|
void main() {
|
|
#ifdef APPLY_LENS_DISTORTION
|
|
vec2 coords = uv * 2.0 - 1.0;
|
|
vec2 offset = coords - data.eye_center;
|
|
|
|
// take aspect ratio into account
|
|
offset.y /= data.aspect_ratio;
|
|
|
|
// distort
|
|
vec2 offset_sq = offset * offset;
|
|
float radius_sq = offset_sq.x + offset_sq.y;
|
|
float radius_s4 = radius_sq * radius_sq;
|
|
float distortion_scale = 1.0 + (data.k1 * radius_sq) + (data.k2 * radius_s4);
|
|
offset *= distortion_scale;
|
|
|
|
// reapply aspect ratio
|
|
offset.y *= data.aspect_ratio;
|
|
|
|
// add our eye center back in
|
|
coords = offset + data.eye_center;
|
|
coords /= data.upscale;
|
|
|
|
// and check our color
|
|
if (coords.x < -1.0 || coords.y < -1.0 || coords.x > 1.0 || coords.y > 1.0) {
|
|
color = vec4(0.0, 0.0, 0.0, 1.0);
|
|
} else {
|
|
// layer is always used here
|
|
coords = (coords + vec2(1.0)) / vec2(2.0);
|
|
color = texture(src_rt, vec3(coords, data.layer));
|
|
}
|
|
#elif defined(USE_LAYER)
|
|
color = texture(src_rt, vec3(uv, data.layer));
|
|
#else
|
|
color = texture(src_rt, uv);
|
|
#endif
|
|
|
|
// Colorspace conversion for final blit
|
|
if (data.target_color_space == COLOR_SPACE_SRGB_LINEAR) {
|
|
if (data.source_is_srgb == true) {
|
|
// sRGB -> linear conversion
|
|
color.rgb = srgb_to_linear(color.rgb);
|
|
}
|
|
|
|
// Adjust brightness of SDR content to reference luminance
|
|
color.rgb *= data.reference_multiplier;
|
|
} else if (data.target_color_space == COLOR_SPACE_SRGB_NONLINEAR) {
|
|
if (data.source_is_srgb == false) {
|
|
// linear -> sRGB conversion
|
|
color.rgb = linear_to_srgb(color.rgb);
|
|
}
|
|
} else if (data.target_color_space == COLOR_SPACE_HDR10_ST2084) {
|
|
if (data.source_is_srgb == true) {
|
|
// sRGB -> linear conversion
|
|
color.rgb = srgb_to_linear(color.rgb);
|
|
}
|
|
|
|
// Convert to Rec.2020 primaries
|
|
color.rgb = rec709_to_rec2020(color.rgb);
|
|
|
|
// Adjust brightness of SDR content to reference luminance
|
|
color.rgb *= data.reference_multiplier;
|
|
|
|
// Apply the ST2084 curve
|
|
color.rgb = linear_to_st2084(color.rgb);
|
|
}
|
|
}
|