1
0
Fork 0
godot/drivers/gles3/shaders/tonemap_inc.glsl

175 lines
7.7 KiB
GLSL

layout(std140) uniform TonemapData { //ubo:0
float exposure;
float white;
int tonemapper;
int pad;
int pad2;
float brightness;
float contrast;
float saturation;
};
// This expects 0-1 range input.
vec3 linear_to_srgb(vec3 color) {
//color = clamp(color, vec3(0.0), vec3(1.0));
//const vec3 a = vec3(0.055f);
//return mix((vec3(1.0f) + a) * pow(color.rgb, vec3(1.0f / 2.4f)) - a, 12.92f * color.rgb, lessThan(color.rgb, vec3(0.0031308f)));
// Approximation from http://chilliant.blogspot.com/2012/08/srgb-approximations-for-hlsl.html
return max(vec3(1.055) * pow(color, vec3(0.416666667)) - vec3(0.055), vec3(0.0));
}
// This expects 0-1 range input, outside that range it behaves poorly.
vec3 srgb_to_linear(vec3 color) {
// Approximation from http://chilliant.blogspot.com/2012/08/srgb-approximations-for-hlsl.html
return color * (color * (color * 0.305306011 + 0.682171111) + 0.012522878);
}
#ifdef APPLY_TONEMAPPING
// Based on Reinhard's extended formula, see equation 4 in https://doi.org/cjbgrt
vec3 tonemap_reinhard(vec3 color, float p_white) {
float white_squared = p_white * p_white;
vec3 white_squared_color = white_squared * color;
// Equivalent to color * (1 + color / white_squared) / (1 + color)
return (white_squared_color + color * color) / (white_squared_color + white_squared);
}
vec3 tonemap_filmic(vec3 color, float p_white) {
// exposure bias: input scale (color *= bias, white *= bias) to make the brightness consistent with other tonemappers
// also useful to scale the input to the range that the tonemapper is designed for (some require very high input values)
// has no effect on the curve's general shape or visual properties
const float exposure_bias = 2.0f;
const float A = 0.22f * exposure_bias * exposure_bias; // bias baked into constants for performance
const float B = 0.30f * exposure_bias;
const float C = 0.10f;
const float D = 0.20f;
const float E = 0.01f;
const float F = 0.30f;
vec3 color_tonemapped = ((color * (A * color + C * B) + D * E) / (color * (A * color + B) + D * F)) - E / F;
float p_white_tonemapped = ((p_white * (A * p_white + C * B) + D * E) / (p_white * (A * p_white + B) + D * F)) - E / F;
return color_tonemapped / p_white_tonemapped;
}
// Adapted from https://github.com/TheRealMJP/BakingLab/blob/master/BakingLab/ACES.hlsl
// (MIT License).
vec3 tonemap_aces(vec3 color, float p_white) {
const float exposure_bias = 1.8f;
const float A = 0.0245786f;
const float B = 0.000090537f;
const float C = 0.983729f;
const float D = 0.432951f;
const float E = 0.238081f;
// Exposure bias baked into transform to save shader instructions. Equivalent to `color *= exposure_bias`
const mat3 rgb_to_rrt = mat3(
vec3(0.59719f * exposure_bias, 0.35458f * exposure_bias, 0.04823f * exposure_bias),
vec3(0.07600f * exposure_bias, 0.90834f * exposure_bias, 0.01566f * exposure_bias),
vec3(0.02840f * exposure_bias, 0.13383f * exposure_bias, 0.83777f * exposure_bias));
const mat3 odt_to_rgb = mat3(
vec3(1.60475f, -0.53108f, -0.07367f),
vec3(-0.10208f, 1.10813f, -0.00605f),
vec3(-0.00327f, -0.07276f, 1.07602f));
color *= rgb_to_rrt;
vec3 color_tonemapped = (color * (color + A) - B) / (color * (C * color + D) + E);
color_tonemapped *= odt_to_rgb;
p_white *= exposure_bias;
float p_white_tonemapped = (p_white * (p_white + A) - B) / (p_white * (C * p_white + D) + E);
return color_tonemapped / p_white_tonemapped;
}
// This is a simplified glsl implementation of EaryChow's AgX that is used by Blender.
// Input: unbounded linear Rec. 709
// Output: unbounded linear Rec. 709 (Most any value you care about will be within [0.0, 1.0], thus safe to clip.)
// This code is based off of the script that generates the AgX_Base_sRGB.cube LUT that Blender uses.
// Source: https://github.com/EaryChow/AgX_LUT_Gen/blob/main/AgXBasesRGB.py
// Changes: Negative clipping in input color space without "guard rails" and no chroma-angle mixing.
// Repository for this code: https://github.com/allenwp/AgX-GLSL-Shaders
// Refer to source repository for other matrices if input/output color space ever changes.
vec3 tonemap_agx(vec3 color) {
// Combined linear sRGB to linear Rec 2020 and Blender AgX inset matrices:
const mat3 srgb_to_rec2020_agx_inset_matrix = mat3(
0.54490813676363087053, 0.14044005884001287035, 0.088827411851915368603,
0.37377945959812267119, 0.75410959864013760045, 0.17887712465043811023,
0.081384976686407536266, 0.10543358536857773485, 0.73224999956948382528);
// Combined inverse AgX outset matrix and linear Rec 2020 to linear sRGB matrices.
const mat3 agx_outset_rec2020_to_srgb_matrix = mat3(
1.9645509602733325934, -0.29932243390911083839, -0.16436833806080403409,
-0.85585845117807513559, 1.3264510741502356555, -0.23822464068860595117,
-0.10886710826831608324, -0.027084020983874825605, 1.402665347143271889);
// Terms of Timothy Lottes' tonemapping curve equation:
// c and b are calculated based on a and d with AgX mid and max parameters
// using the Mathematica notebook in the source AgX-GLSL-Shaders repository.
const float a = 1.36989969378897;
const float c = 0.3589386656982;
const float b = 1.4325264680543;
const float e = a * 0.903916850555009; // = a * d
// Large negative values in one channel and large positive values in other
// channels can result in a colour that appears darker and more saturated than
// desired after passing it through the inset matrix. For this reason, it is
// best to prevent negative input values.
// This is done before the Rec. 2020 transform to allow the Rec. 2020
// transform to be combined with the AgX inset matrix. This results in a loss
// of color information that could be correctly interpreted within the
// Rec. 2020 color space as positive RGB values, but is often not worth
// the performance cost of an additional matrix multiplication.
// A value of 2e-10 intentionally introduces insignificant error to prevent
// log2(0.0) after the inset matrix is applied; color will be >= 1e-10 after
// the matrix transform.
color = max(color, 2e-10);
// Apply inset matrix.
color = srgb_to_rec2020_agx_inset_matrix * color;
// Use Timothy Lottes' tonemapping equation to approximate AgX's curve.
// Slide 44 of "Advanced Techniques and Optimization of HDR Color Pipelines"
// https://gpuopen.com/wp-content/uploads/2016/03/GdcVdrLottes.pdf
// color = pow(color, a);
// color = color / (pow(color, d) * b + c);
// Simplified using hardware-implemented shader operations.
// Thanks to Stephen Hill for this optimization tip!
color = log2(color);
color = exp2(color * a) / (exp2(color * e) * b + c);
// Apply outset to make the result more chroma-laden and then go back to linear sRGB.
color = agx_outset_rec2020_to_srgb_matrix * color;
// Blender's lusRGB.compensate_low_side is too complex for this shader, so
// simply return the color, even if it has negative components. These negative
// components may be useful for subsequent color adjustments.
return color;
}
#define TONEMAPPER_LINEAR 0
#define TONEMAPPER_REINHARD 1
#define TONEMAPPER_FILMIC 2
#define TONEMAPPER_ACES 3
#define TONEMAPPER_AGX 4
vec3 apply_tonemapping(vec3 color, float p_white) { // inputs are LINEAR
// Ensure color values passed to tonemappers are positive.
// They can be negative in the case of negative lights, which leads to undesired behavior.
if (tonemapper == TONEMAPPER_LINEAR) {
return color;
} else if (tonemapper == TONEMAPPER_REINHARD) {
return tonemap_reinhard(max(vec3(0.0f), color), p_white);
} else if (tonemapper == TONEMAPPER_FILMIC) {
return tonemap_filmic(max(vec3(0.0f), color), p_white);
} else if (tonemapper == TONEMAPPER_ACES) {
return tonemap_aces(max(vec3(0.0f), color), p_white);
} else { // TONEMAPPER_AGX
return tonemap_agx(color);
}
}
#endif // APPLY_TONEMAPPING